Given a Binary Search Tree and a key, your task is to Search In Binary Search Tree and check whether the given key exists in the tree or not.
Code Flow for Search In Binary Search Tree
Null Check:
-
if (null == temp)
:-
This condition checks if
temp
isnull
, meaning the tree is empty, or we've reached a leaf node without finding thesearchKey
. -
If
temp
isnull
, the method does nothing (this is a no-op), and the search continues to the next condition. -
The function will return
false
after checking all possible paths (because there's areturn false
at the end of the method).
-
Search in the Right Subtree:
-
else if (searchKey > temp.data)
:-
If the
searchKey
is greater than the value stored in the current node (temp.data
), then the search must continue in the right subtree. -
The method makes a recursive call to search the right child of the current node:
search(temp.right, searchKey)
. -
The result of this recursive call is returned directly, ensuring the result (
true
orfalse
) propagate correctly.
-
Search in the Left Subtree:
-
else if (searchKey < temp.data)
:-
If the
searchKey
is less than the value in the current node (temp.data
), then the search must continue in the left subtree. -
The method makes a recursive call to search the left child of the current node:
search(temp.left, searchKey)
. -
As with the right subtree, the result of this recursive call is returned to ensure the search result propagates.
-
Key Found:
-
else if (searchKey == temp.data)
:-
If the
searchKey
is equal to the value in the current node (temp.data
), the key has been found. -
The method returns
true
, indicating that the search was successful.
-
Final Return Statement:
-
return false;
:-
This is the fallback return value.
-
If none of the conditions in the if-else chain are met (i.e., the key was not found in the tree), this statement is executed, returning
false
to indicate that the key does not exist in the tree.
-
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.Objects;
public class BinarySearchTree {
Node root;
boolean search(Node root, int searchKey) {
/* if root is null, meaning the tree is empty, or a leaf node is reached without finding the searchKey. */
if (Objects.isNull(root)) {
return false;
}
/* If the searchKey is greater than the value stored in the current node (temp.data), then the search must continue in the right subtree. */
else if (searchKey > root.data) {
return search(root.right, searchKey);
}
/* If the searchKey is less than the value in the current node (temp.data), then the search must continue in the left subtree. */
else if (searchKey < root.data) {
return search(root.left, searchKey);
}
/* If the searchKey is equal to the value in the current node (temp.data), the key has been found. */
else if (searchKey == root.data) {
System.out.println(searchKey + " found");
return true;
}
return false;
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = right = null;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;
public class BinarySearchTreeTest {
@Test
void testEmptyTree() {
// Test for an empty tree (null root)
BinarySearchTree tree = new BinarySearchTree();
assertFalse(tree.search(null, 1), "Searching for a non-existent key in a single node tree should return false.");
}
@Test
void testSingleNodeTree() {
// Test for a tree with a single node
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
assertTrue(tree.search(tree.root, 10), "Searching for the only node in a single node tree should return true.");
}
@Test
void testBalancedBinaryTree() {
// Test for a balanced binary tree
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(12);
tree.insert(18);
assertTrue(tree.search(tree.root, 12), "Searching for a key should return true.");
}
@Test
void testUnbalancedBinaryTree() {
// Test for an unbalanced binary tree (sorted order insertion creating a right-skewed tree)
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(20);
tree.insert(30);
tree.insert(40);
tree.insert(50);
assertTrue(tree.search(tree.root, 50), "Searching for a key at a leaf node should return true.");
}
@Test
void testTreeWithNegativeValues() {
// Test for a tree with negative values
BinarySearchTree tree = new BinarySearchTree();
tree.insert(-5);
tree.insert(-3);
tree.insert(-2);
tree.insert(-1);
tree.insert(-7);
tree.insert(-4);
assertTrue(tree.search(tree.root, 1), "Searching for a key that is not in the tree should return false.");
}
@Test
void testLargeTree() {
// Test for a large tree with many nodes
BinarySearchTree tree = new BinarySearchTree();
for (int i = 1; i <= 1000; i++) {
tree.insert(i);
}
assertTrue(tree.search(tree.root, 1000), "Searching for a key present in large tree should return true.");
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
Time Complexity
-
Time Complexity:
O(n)
(in the worst case)
Space Complexity
- Space Complexity:
O(h)
, whereh
is the height of the tree. It can beO(log n)
for a balanced tree andO(n)
for an unbalanced tree.