The top View of a Binary Tree
displays the nodes that would be visible if you looked at the tree from directly above. This includes the leftmost
and rightmost
nodes at each horizontal level
.
Code Flow for Print Top View of Binary Tree
-
Start:
-
Input the root node of the binary tree.
-
-
Check if the root is
null
:-
If
true
, terminate the process. -
If
false
, proceed to the next step.
-
-
Create a TreeMap to store the top view (
map
).-
Keys: Horizontal distances (
hrzDis
). -
Values: Node values.
-
-
Create a Queue for level-order traversal and add the root node with
hrzDis = 0
. -
While the queue is not empty:
-
Dequeue a node (
poll
operation). -
Retrieve its horizontal distance (
hrzDis
).
-
-
Check if the horizontal distance (
hrzDis
) exists in theTreeMap
:-
If not, add the node's data to the map (
map.put(hrzDis, data)
).
-
-
Add the left child to the queue with
hrzDis - 1
(if non-null). -
Add the right child to the queue with
hrzDis + 1
(if non-null).
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.LinkedList;
import java.util.Map;
import java.util.Objects;
import java.util.Queue;
import java.util.TreeMap;
public class BinarySearchTree {
Node root;
public static void topView(Node root) {
/* If the root node is null, the method returns immediately. */
if (Objects.isNull(root)) {
System.out.println("the root is null");
return;
}
/* Set the horizontal distance of the root node to 0. */
int hrzDis = 0;
Map<Integer, Integer> map = new TreeMap<>();
// create a queue for level order traversal
Queue<Node> queue = new LinkedList<>();
// Assign initialized horizontal distance value to root node and add it to the queue.
root.hrzDis = hrzDis;
// add root with level 0
queue.add(root);
while (!queue.isEmpty()) {
Node tnode = queue.poll();
hrzDis = tnode.hrzDis;
// check if this is the first node for this level
if (!map.containsKey(hrzDis)) {
map.put(hrzDis, tnode.data);
}
// add left child in the queue with horizontal distance hrzDis-1.
if (Objects.nonNull(tnode.left)) {
tnode.left.hrzDis = hrzDis - 1;
queue.add(tnode.left);
}
// add right child in the queue with horizontal distance hrzDis+1.
if (Objects.nonNull(tnode.right)) {
tnode.right.hrzDis = hrzDis + 1;
queue.add(tnode.right);
}
}
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
System.out.print(entry.getValue() + " ");
}
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
@Data
class Node {
int data;
Node left;
Node right;
int hrzDis;
public Node(int data) {
this.data = data;
left = right = null;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
public class BinarySearchTreeTest {
@Test
void testTopViewSingleNode() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
BinarySearchTree.topView(tree.root);
// Expect output: "10"
}
@Test
void testTopViewBalancedTree() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(3);
tree.insert(7);
tree.insert(12);
tree.insert(20);
BinarySearchTree.topView(tree.root);
// Expect output: "3 5 10 15 20"
}
@Test
void testTopViewSkewedLeftTree() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(9);
tree.insert(8);
tree.insert(7);
BinarySearchTree.topView(tree.root);
// Expect output: "7 8 9 10"
}
@Test
void testTopViewSkewedRightTree() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(11);
tree.insert(12);
tree.insert(13);
BinarySearchTree.topView(tree.root);
// Expect output: "10 11 12 13"
}
@Test
void testTopViewComplexTree() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(1);
tree.insert(6);
tree.insert(8);
BinarySearchTree.topView(tree.root);
// Expect output: "1 2 5 10 15"
}
@Test
void testTopViewEmptyTree() {
BinarySearchTree tree = new BinarySearchTree();
BinarySearchTree.topView(tree.root);
// Expect output: ""
}
@Test
void testTopViewUnbalancedTree() {
BinarySearchTree tree = new BinarySearchTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(4);
tree.insert(3);
tree.insert(20);
BinarySearchTree.topView(tree.root);
// Expect output: "3 4 5 10 15 20"
}
@Test
void topViewTest() {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(4);
binarySearchTree.insert(2);
binarySearchTree.insert(1);
binarySearchTree.insert(3);
binarySearchTree.insert(6);
binarySearchTree.insert(5);
binarySearchTree.insert(7);
BinarySearchTree.topView(binarySearchTree.root);
// Expect output: "1 2 4 6 7"
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
Time Complexity is O(n log k), where:
-
n
is the number of nodes in the tree. -
k
is the number of unique horizontal distances (which is at mostn
in a worst-case scenario).
Space Complexity is O(n) for the queue and O(k) for the TreeMap
, resulting in a combined complexity of O(n) in the worst case.