Given a Binary Tree, the task is to find the Print Level of a Node in the Binary Tree, whereas the level of a node is defined as the number of edges from the root node to the target node. The root node is at level 0.
Code Flow for Print Level of a Node
-
Base case check:
-
if (Objects.isNull(node)) { ... return 0; }
-
If the current node is
null
, it means you've reached the end of a branch (or the tree is empty). -
The method returns
0
, indicating the target node was not found on this path.
-
-
-
Check if the current node matches the target data:
-
if (node.data == targetData) { return level; }
-
If the current node's data matches the
targetData
, it means you've found the node. -
The method then returns the
level
of the node, which represents its depth in the tree.
-
-
-
Recursive call for the left child:
-
int leftLevel = nodeLevel(node.left, targetData, level + 1);
-
The method recursively searches the left child of the current node, passing an incremented
level
value (because the left child is one level deeper). -
The result of this recursive call is stored in
leftLevel
.
-
-
-
If the left search was successful:
-
if (leftLevel != 0) { return leftLevel; }
-
If the left subtree search returns a non-zero value (i.e., the node was found), it immediately returns that
leftLevel
value, indicating the target node was found in the left subtree.
-
-
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.Objects;
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = null;
right = null;
}
}
public class BinaryTree {
Node root;
public static int nodeLevel(Node node, int targetData, int level) {
/* If the current node is null, it means you've reached the end of a branch (or the tree is empty). */
if (Objects.isNull(node)) {
System.out.println("BinaryTree.nodeCount node is null");
return 0;
}
/* If the current node's data matches the targetData, it means you've found the node, return the level of the node, which represents its depth in the tree. */
if (node.data == targetData) {
return level;
}
/* recursively searches the left child of the current node, with incremented level value because the left child is one level deeper. */
int leftLevel = nodeLevel(node.left, targetData, level + 1);
/* If the left subtree search returns a non-zero value i.e., indicating the target node was found in the left subtree, return the level */
if (leftLevel != 0) {
return leftLevel;
}
/* recursively searches the right child of the current node, with incremented level value because the right child is one level deeper. */
return nodeLevel(node.right, targetData, level + 1);
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
public class BinaryTreeTest {
private static final int initialLevel = 1;
@Test
void testEmptyTree() {
// Test for an empty tree (null root)
assertEquals(0, BinaryTree.nodeLevel(null, 0, initialLevel), "Node level of an empty tree should be 0");
}
@Test
void testSingleNodeTree() {
// Test for a tree with a single node
BinaryTree tree = new BinaryTree();
tree.insert(10);
assertEquals(1, BinaryTree.nodeLevel(tree.root, 10, initialLevel), "Node level of a single node tree should be the node's value");
}
@Test
void testBalancedBinaryTree() {
// Test for a balanced binary tree
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(12);
tree.insert(18);
assertEquals(3, BinaryTree.nodeLevel(tree.root, 18, initialLevel), "Node level of balanced binary tree nodes should be correct");
}
@Test
void testTargetNotInTree() {
// Test for a balanced binary tree
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(12);
tree.insert(18);
assertEquals(0, BinaryTree.nodeLevel(tree.root, 20, initialLevel), "Node level of invalid data should not be found");
}
@Test
void testUnbalancedBinaryTree() {
// Test for an unbalanced binary tree (sorted order insertion creating a right-skewed tree)
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(20);
tree.insert(30);
tree.insert(40);
tree.insert(50);
assertEquals(5, BinaryTree.nodeLevel(tree.root, 50, initialLevel), "Node level of right-skewed tree nodes should be correct");
}
@Test
void testTreeWithNegativeValues() {
// Test for a tree with negative values
BinaryTree tree = new BinaryTree();
tree.insert(-5);
tree.insert(-3);
tree.insert(-2);
tree.insert(-1);
tree.insert(-7);
tree.insert(-4);
assertEquals(3, BinaryTree.nodeLevel(tree.root, -4, initialLevel), "Node level of tree with negative values should be correct");
}
@Test
void testLargeTree() {
// Test for a large tree with many nodes
BinaryTree tree = new BinaryTree();
for (int i = 1; i <= 1000; i++) {
tree.insert(i);
}
assertEquals(1000, BinaryTree.nodeLevel(tree.root, 1000, initialLevel), "Node level of large tree should be correct");
}
@Test
void testBalancedTree() {
Node root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.left.left = new Node(2);
root.left.right = new Node(7);
root.right.left = new Node(12);
root.right.right = new Node(18);
assertEquals(3, BinaryTree.nodeLevel(root, 18, initialLevel), "Node level of Balanced Tree should be correct");
}
@Test
void testRightSkewedTree() {
Node root = new Node(10);
root.right = new Node(20);
root.right.right = new Node(30);
root.right.right.right = new Node(40);
root.right.right.right.right = new Node(50);
assertEquals(5, BinaryTree.nodeLevel(root, 50, initialLevel), "Node level of Right Skewed Tree should be correct");
}
@Test
void testTreeWithDuplicateValues() {
// Constructing the following tree:
// 1
// / \
// 1 1
// / \ / \
// 1 1 1 1
BinaryTree binaryTree = new BinaryTree();
Node root = new Node(1);
root.left = new Node(1);
root.right = new Node(1);
root.left.left = new Node(1);
root.left.right = new Node(1);
root.right.left = new Node(1);
root.right.right = new Node(1);
assertEquals(1, BinaryTree.nodeLevel(root, 1, initialLevel), "Node level of Right Skewed Tree should be correct");
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
Time Complexity
O(n) where n
is the total number of nodes in the trees.
Space Complexity
O(h) where h
is the height of the tree (can be as bad as O(n) for a skewed tree or O(log n) for a balanced tree).