Given a Binary tree
, the task is to Count Height of a Binary Tree, which is defined as the number of edges from the root to the deepest node.
Code Flow for Count Height of a Binary Tree
-
Base Case (Null Check):
-
If
node
isnull
, return 0. This indicates that an empty node has been reached, and its depth is 0.
-
-
Recursive Case:
-
If the node is not
null
, recursively calls itself on the left and right children of the current node (node.left
andnode.right
). -
The height of the current node is calculated by taking the maximum height between the left and right subtrees using
Math.max()
. -
The result is then incremented by 1 to account for the edge between the current node and its child.
-
-
Return Value:
-
The final height of the binary tree is returned, which is the maximum depth of the tree from the root to the deepest leaf node.
-
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.Objects;
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = null;
right = null;
}
}
public class BinaryTree {
Node root;
public static int countTreeHeight(Node node) {
if (Objects.isNull(node)) {
System.out.println("BinaryTree.countTreeHeight node is null");
return 0;
}
return Math.max(countTreeHeight(node.left), countTreeHeight(node.right)) + 1;
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
public class BinaryTreeTest {
@Test
void testEmptyTree() {
// Test for an empty tree (null root)
assertEquals(0, BinaryTree.countTreeHeight(null), "Height of an empty tree should be 0");
}
@Test
void testSingleNodeTree() {
// Test for a tree with a single node
BinaryTree tree = new BinaryTree();
tree.insert(10);
assertEquals(1, BinaryTree.countTreeHeight(tree.root), "Height of a single node tree should be 1");
}
@Test
void testBalancedBinaryTree() {
// Test for a balanced binary tree
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(12);
tree.insert(18);
assertEquals(3, BinaryTree.countTreeHeight(tree.root), "Height of balanced binary tree nodes should be correct");
}
@Test
void testUnbalancedBinaryTree() {
// Test for an unbalanced binary tree (sorted order insertion creating a right-skewed tree)
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(20);
tree.insert(30);
tree.insert(40);
tree.insert(50);
assertEquals(5, BinaryTree.countTreeHeight(tree.root), "Height of right-skewed tree nodes should be correct");
}
@Test
void testTreeWithNegativeValues() {
// Test for a tree with negative values
BinaryTree tree = new BinaryTree();
tree.insert(-5);
tree.insert(-3);
tree.insert(-2);
tree.insert(-1);
tree.insert(-7);
tree.insert(-4);
assertEquals(4, BinaryTree.countTreeHeight(tree.root), "Height of tree with negative values should be correct");
}
@Test
void testLargeTree() {
// Test for a large tree with many nodes
BinaryTree tree = new BinaryTree();
for (int i = 1; i <= 1000; i++) {
tree.insert(i);
}
assertEquals(1000, BinaryTree.countTreeHeight(tree.root), "Height of large tree should be correct");
}
@Test
void testBalancedTree() {
Node root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.left.left = new Node(2);
root.left.right = new Node(7);
root.right.left = new Node(12);
root.right.right = new Node(18);
assertEquals(3, BinaryTree.countTreeHeight(root), "Height of Balanced Tree should be correct");
}
@Test
void testRightSkewedTree() {
// Constructing the following tree:
// 10
// \
// 20
// \
// 30
// \
// 40
// \
// 50
Node root = new Node(10);
root.right = new Node(20);
root.right.right = new Node(30);
root.right.right.right = new Node(40);
root.right.right.right.right = new Node(50);
assertEquals(5, BinaryTree.countTreeHeight(root), "Height of Right Skewed should be correct");
}
@Test
void testTreeWithDuplicateValues() {
// Constructing the following tree:
// 1
// / \
// 1 1
// / \ / \
// 1 1 1 1
Node root = new Node(1);
root.left = new Node(1);
root.right = new Node(1);
root.left.left = new Node(1);
root.left.right = new Node(1);
root.right.left = new Node(1);
root.right.right = new Node(1);
assertEquals(3, BinaryTree.countTreeHeight(root), "Height of Tree with duplicate values.");
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
Time Complexity
-
Time Complexity: O(n), where n is the number of nodes in the binary tree.
Space Complexity
-
Space Complexity: O(h), where h is the height of the tree. In the worst case, h can be O(n) (for a skewed tree), and in the best case, h is O(log n) (for a balanced tree).