Given a Binary Tree, the task is to Print Data at Given Level in Binary Tree.
Code Flow for Print Data at Given Level in Binary Tree
-
Base Case for Null Node:
-
if (Objects.isNull(node))
:-
Checks if the given node is
null
. -
If the node is
null
, it prints a message ("BinaryTree.printAtLevel node is null") and returns, effectively stopping further processing for this branch of the tree.
-
-
-
Base Case for Reaching Desired Level:
-
if (level == 1)
:-
If the current level is 1, it means the current node is at the desired level.
-
It prints the data of the current node:
System.out.println("BinaryTree.printAtLevel " + node.data);
. -
After printing the data, the method returns and does not process further.
-
-
-
Recursive Calls for Left and Right Subtrees:
-
printAtLevel(node.left, level - 1);
:-
Recursively calls
printAtLevel
on the left child of the current node, reducing thelevel
by 1.
-
-
printAtLevel(node.right, level - 1);
:-
Similarly, it calls
printAtLevel
on the right child of the current node, again reducing thelevel
by 1.
-
-
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.Objects;
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = null;
right = null;
}
}
public class BinaryTree {
Node root;
public static void printAtLevel(Node node, int level) {
if (Objects.isNull(node)) {
System.out.println("BinaryTree.printAtLevel node is null");
return;
}
/* If the current level is 1, it means the current node is at the desired level. */
if (level == 1) {
System.out.println("BinaryTree.printAtLevel " + node.data);
return;
}
/* Recursively calls printAtLevel on the left child of the current node, reducing the level by 1. */
printAtLevel(node.left, level - 1);
/* Recursively calls printAtLevel on the right child of the current node, reducing the level by 1. */
printAtLevel(node.right, level - 1);
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
public class BinaryTreeTest {
@Test
void testEmptyTree() {
// Test for an empty tree (null root)
BinaryTree.printAtLevel(null, 1);
}
@Test
void testSingleNodeTree() {
// Test for a tree with a single node
BinaryTree tree = new BinaryTree();
tree.insert(10);
BinaryTree.printAtLevel(tree.root, 1);
}
@Test
void testBalancedBinaryTree() {
// Test for a balanced binary tree
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(5);
tree.insert(15);
tree.insert(2);
tree.insert(7);
tree.insert(12);
tree.insert(18);
BinaryTree.printAtLevel(tree.root, 3);
}
@Test
void testUnbalancedBinaryTree() {
// Test for an unbalanced binary tree (sorted order insertion creating a right-skewed tree)
BinaryTree tree = new BinaryTree();
tree.insert(10);
tree.insert(20);
tree.insert(30);
tree.insert(40);
tree.insert(50);
BinaryTree.printAtLevel(tree.root, 5);
}
@Test
void testTreeWithNegativeValues() {
// Test for a tree with negative values
BinaryTree tree = new BinaryTree();
tree.insert(-5);
tree.insert(-3);
tree.insert(-2);
tree.insert(-1);
tree.insert(-7);
tree.insert(-4);
BinaryTree.printAtLevel(tree.root, 4);
}
@Test
void testLargeTree() {
// Test for a large tree with many nodes
BinaryTree tree = new BinaryTree();
for (int i = 1; i <= 1000; i++) {
tree.insert(i);
}
BinaryTree.printAtLevel(tree.root, 999);
}
@Test
void testBalancedTree() {
Node root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.left.left = new Node(2);
root.left.right = new Node(7);
root.right.left = new Node(12);
root.right.right = new Node(18);
BinaryTree.printAtLevel(root, 3);
}
@Test
void testRightSkewedTree() {
// Constructing the following tree:
// 10
// \
// 20
// \
// 30
// \
// 40
// \
// 50
Node root = new Node(10);
root.right = new Node(20);
root.right.right = new Node(30);
root.right.right.right = new Node(40);
root.right.right.right.right = new Node(50);
BinaryTree.printAtLevel(root, 5);
}
@Test
void testTreeWithDuplicateValues() {
// Constructing the following tree:
// 1
// / \
// 1 1
// / \ / \
// 1 1 1 1
Node root = new Node(1);
root.left = new Node(1);
root.right = new Node(1);
root.left.left = new Node(1);
root.left.right = new Node(1);
root.right.left = new Node(1);
root.right.right = new Node(1);
BinaryTree.printAtLevel(root, 3);
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
Time Complexity
-
Time Complexity: O(n), where
n
is the number of nodes in the binary tree.
Space Complexity
-
Space Complexity: O(n) in the worst case (unbalanced tree) and O(log n) in the best case (balanced tree).