Spring Ai Re Reading Advisor

The article "Re-Reading Improves Reasoning in Large Language Models" introduces a new technique called Re-Reading or Re2. The Re-Reading improves the reasoning capability of the AI Model.

{Input_Query}
Read the question again: {Input_Query}

The Re Reading Advisor forces the AI Model to read the user query one more time just to make sure all aspects are covered. Spring Ai Re Reading Advisor implements the same technique and enhances the AI Model response.

package com.example.springai.configuration;

import org.springframework.ai.chat.client.advisor.api.AdvisedRequest;
import org.springframework.ai.chat.client.advisor.api.AdvisedResponse;
import org.springframework.ai.chat.client.advisor.api.CallAroundAdvisor;
import org.springframework.ai.chat.client.advisor.api.CallAroundAdvisorChain;
import org.springframework.ai.chat.client.advisor.api.StreamAroundAdvisor;
import org.springframework.ai.chat.client.advisor.api.StreamAroundAdvisorChain;
import org.springframework.stereotype.Component;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;

import java.util.HashMap;
import java.util.Map;

@Component
public class ReReadingAdvisor implements CallAroundAdvisor, StreamAroundAdvisor {
    private AdvisedRequest before(AdvisedRequest advisedRequest) {

        Map<String, Object> advisedUserParams = new HashMap<>(advisedRequest.userParams());
        advisedUserParams.put("re2_input_query", advisedRequest.userText());

        return AdvisedRequest.from(advisedRequest).withUserText("""
                {re2_input_query}
                Read the question again: {re2_input_query}
                """).withUserParams(advisedUserParams).build();
    }

    @Override
    public AdvisedResponse aroundCall(AdvisedRequest advisedRequest, CallAroundAdvisorChain chain) {
        return chain.nextAroundCall(this.before(advisedRequest));
    }

    @Override
    public Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
        return chain.nextAroundStream(this.before(advisedRequest));
    }

    @Override
    public int getOrder() {
        return 0;
    }

    @Override
    public String getName() {
        return this.getClass().getSimpleName();
    }
}
package com.example.springai;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import java.util.List;

@SpringBootApplication
public class SpringAiApplication {
    public static void main(String[] args) {
        SpringApplication.run(SpringAiApplication.class, args);
    }
}
spring.application.name=SpringAi
spring.docker.compose.lifecycle-management=start-only
spring.threads.virtual.enabled=true
# The default Ollama Model in Spring Ai is mistral, but it can be changed by setting the property. use the same model in entrypoint.sh file
#spring.ai.ollama.chat.options.model=llama3.1
# If running the Ollama Docker Instance separately, then set this property
spring.docker.compose.enabled=false
services:
  ollama-model:
    image: ollama/ollama:latest
    container_name: ollama_container
    ports:
      - 11434:11434/tcp
    healthcheck:
      test: ollama --version || exit 1
    command: serve
    volumes:
      - ./ollama/ollama:/root/.ollama
      - ./entrypoint.sh:/entrypoint.sh
    pull_policy: missing
    tty: true
    restart: no
    entrypoint: [ "/usr/bin/bash", "/entrypoint.sh" ]

  open-webui:
    image: ghcr.io/open-webui/open-webui:main
    container_name: open_webui_container
    environment:
      WEBUI_AUTH: false
    ports:
      - "8081:8080"
    extra_hosts:
      - "host.docker.internal:host-gateway"
    volumes:
      - open-webui:/app/backend/data
    restart: no

volumes:
  open-webui:
#!/bin/bash
# Start Ollama in the background.
/bin/ollama serve &
# Record Process ID.
pid=$!
# Pause for Ollama to start.
sleep 5
# The default Ollama Model in Spring Ai is mistral, but it can be changed in the applications property file. Make sure to download the same Model here
echo "🔴 Retrieve LLAMA3 model..."
ollama pull mistral
echo "🟢 Done!"
# Wait for the Ollama process to finish.
wait $pid
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.2</version>
        <relativePath/>
    </parent>
    <groupId>com.example.springai</groupId>
    <artifactId>prompt-re-reading-advisor</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>Prompt Re Reading Advisor</name>
    <description>Demo project for Spring Boot</description>

    <properties>
        <java.version>21</java.version>
        <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-redis-store-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-docker-compose</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <mainClass>com.example.springai.SpringAiApplication</mainClass>
                    <excludes>
                        <exclude>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </exclude>
                    </excludes>
                </configuration>
            </plugin>
        </plugins>
    </build>
    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>
</project>

Run the curl to see the Spring Ai Re Reading Advisor

curl --location 'http://localhost:8080/hello'

follow us on