Prompts
are guides and instructions that direct the AI Model
to generate the desired output. They significantly impact the production of the AI Model response
. it provides generic instructions
with placeholders
to add user-defined values at run time. Spring Ai Prompt
uses the String Template
provided by Java 17
to create Prompts
.
Message
Spring AI
provides a Message Interface
that encapsulates
the Prompts
and metadata
around the Prompt Execution
.
Roles
The Prompt Messages
are assigned a specific role
. these roles
are used to categorize
and clarify
the Message
provided in the Prompt
. Majorly AI Models
uses 4 types of Roles
.
-
System Role: The
System Role
has the highest priority of theRole
. it directs theAI Model
behavior andresponse
style, it setsparameters
andrules
for theAI Model
to execute and respond to the commands. -
User Role: The
User Role
represents the user’s input such asquestions
,commands
, orstatements
to theAI Model
. ThisRole
provides the context for theAI Model Response
. -
Assistant Role:
Spring Ai
supports communication with theModel
, and maintains the flow of conversation. it keeps track of the previousUsers' Messages
andAI Responses
to keep the response relevant to the topic. SometimesAssistant Message
may call the externaltool
orfunctions
to enhance theAI Model
capabilities. -
Tool or Function Role: The
Tool
orFunction Role
enhances the functionality of theAI Model
by calling additional externaltools
that provide additional information in the response.
package com.example.springai.controller;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
@RestController
public class SpringAiController {
private final ChatClient chatClient;
public SpringAiController(ChatClient.Builder chatClient) {
this.chatClient = chatClient.build();
}
@GetMapping("/prompt")
public AssistantMessage prompt() {
var systemMessage = new SystemMessage("You are an assistant that speaks like Shakespeare.");
var userMessage = new UserMessage("tell me a joke.");
var prompt = new Prompt(List.of(systemMessage, userMessage));
return chatClient.prompt(prompt).call().chatResponse().getResult().getOutput();
}
}
package com.example.springai;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringAiApplication {
public static void main(String[] args) {
SpringApplication.run(SpringAiApplication.class, args);
}
}
spring.application.name=SpringAi
spring.docker.compose.lifecycle-management=start-only
spring.threads.virtual.enabled=true
# The default Ollama Model in Spring Ai is mistral, but it can be changed by setting the below property. make sure to download the same model in entrypoint.sh file
#spring.ai.ollama.chat.options.model=llama3.1
# If running the Ollama Docker Instance separately, then set this property
spring.docker.compose.enabled=false
services:
ollama-model:
image: ollama/ollama:latest
container_name: ollama_container
ports:
- 11434:11434/tcp
healthcheck:
test: ollama --version || exit 1
command: serve
volumes:
- ./ollama/ollama:/root/.ollama
- ./entrypoint.sh:/entrypoint.sh
pull_policy: missing
tty: true
restart: no
entrypoint: [ "/usr/bin/bash", "/entrypoint.sh" ]
open-webui:
image: ghcr.io/open-webui/open-webui:main
container_name: open_webui_container
environment:
WEBUI_AUTH: false
ports:
- "8081:8080"
extra_hosts:
- "host.docker.internal:host-gateway"
volumes:
- open-webui:/app/backend/data
restart: no
volumes:
open-webui:
#!/bin/bash
# Start Ollama in the background.
/bin/ollama serve &
# Record Process ID.
pid=$!
# Pause for Ollama to start.
sleep 5
# The default Ollama Model in Spring Ai is mistral, but it can be changed in the applications property file. Make sure to download the same Model here
echo "🔴 Retrieve LLAMA3 model..."
ollama pull mistral
echo "🟢 Done!"
# Wait for the Ollama process to finish.
wait $pid
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.2</version>
<relativePath/>
</parent>
<groupId>com.example.springai</groupId>
<artifactId>Prompt</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>Prompt</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>21</java.version>
<spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-docker-compose</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<mainClass>com.example.springai.SpringAiApplication</mainClass>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
</repositories>
</project>
Run the curl to see the Spring Ai Prompt
curl --location 'localhost:8080/prompt'