The Spring AI Bean Output Converter
Using High Level Chat Client
is sufficient for simple Java Beans
responses, but sometimes we require more complex target class structure output
from LLM AI Model
, such as a List
or Map
of the Target Class
. The Spring AI Generic Bean Types
Using High Level Chat Client
uses the ParameterizedTypeReference
and allows to specify more complex target class structures
.
package com.example.springai.controller;
import com.example.springai.entity.Country;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class SpringAiController {
private final ChatClient chatClient;
public SpringAiController(ChatClient.Builder chatClient) {
this.chatClient = chatClient.build();
}
@GetMapping("/beanOutputParser")
Country hello(@RequestParam(value = "letter", defaultValue = "a") String letter) {
var prompt = "Give me a country starts with {letter} and its capital.";
return chatClient.prompt()
.user(prompt)
.user(u -> u.text(prompt).param("letter", letter))
.call()
.entity(new ParameterizedTypeReference<>() {
});
}
}
package com.example.springai.entity;
public record Country(String country, String capital) {
}
package com.example.springai;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringAiApplication {
public static void main(String[] args) {
SpringApplication.run(SpringAiApplication.class, args);
}
}
spring.application.name=SpringAi
spring.docker.compose.lifecycle-management=start-only
spring.threads.virtual.enabled=true
# The default Ollama Model in Spring Ai is mistral, but it can be changed by setting the below property. make sure to download the same model in entrypoint.sh file
#spring.ai.ollama.chat.options.model=llama3.1
# If running the Ollama Docker Instance separately, then set this property
spring.docker.compose.enabled=false
services:
ollama-model:
image: ollama/ollama:latest
container_name: ollama_container
ports:
- 11434:11434/tcp
healthcheck:
test: ollama --version || exit 1
command: serve
volumes:
- ./ollama/ollama:/root/.ollama
- ./entrypoint.sh:/entrypoint.sh
pull_policy: missing
tty: true
restart: no
entrypoint: [ "/usr/bin/bash", "/entrypoint.sh" ]
open-webui:
image: ghcr.io/open-webui/open-webui:main
container_name: open_webui_container
environment:
WEBUI_AUTH: false
ports:
- "8081:8080"
extra_hosts:
- "host.docker.internal:host-gateway"
volumes:
- open-webui:/app/backend/data
restart: no
volumes:
open-webui:
#!/bin/bash
# Start Ollama in the background.
/bin/ollama serve &
# Record Process ID.
pid=$!
# Pause for Ollama to start.
sleep 5
# The default Ollama Model in Spring Ai is mistral, but it can be changed in the applications property file. Make sure to download the same Model here
echo "🔴 Retrieve LLAMA3 model..."
ollama pull mistral
echo "🟢 Done!"
# Wait for the Ollama process to finish.
wait $pid
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.2</version>
<relativePath/>
</parent>
<groupId>com.example.springai</groupId>
<artifactId>generic_bean_types_using_high_level_chatclient_api</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>Generic Bean Types using High Level ChatClient API</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>21</java.version>
<spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-docker-compose</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<mainClass>com.example.springai.SpringAiApplication</mainClass>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
</repositories>
</project>
run the curl to see the Spring AI Generic Bean Types Using High Level Chat Client
curl --location 'localhost:8080/beanOutputParser'