The Right View
of binary tree
refers to the set of nodes visible when the tree is viewed from the right side. In other words, for each level (or depth) of the tree, only the rightmost node at that level is included in the view.
To implement the Right View of a binary tree algorithmically, we can utilize a level-order traversal (Breadth-First Search) with a queue to capture the rightmost nodes of each level
Code Flow for Print Right View of Binary Tree
-
Start Right View Traversal:
-
Check if
root
isnull
.-
If
true
: Return. -
If
false
: Initialize a queue withroot
.
-
-
-
Level Order Traversal:
-
For each level:
-
Count the number of nodes (
size
) in the level. -
Process each node:
-
If it’s the last node of the level (
i == size - 1
), add to the right view. -
Add the left and right children of the current node to the queue.
-
-
-
-
Output Right View:
-
Print the data of the rightmost nodes for each level.
-
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.LinkedList;
import java.util.Objects;
import java.util.Queue;
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = right = null;
}
}
public class BinarySearchTree {
Node root;
public static void rightView(Node root) {
/* If root is null, return */
if (Objects.isNull(root)) {
System.out.println("the root is null");
return;
}
/* Performs a level-order traversal using a queue. */
Queue<Node> queue = new LinkedList<>();
queue.add(root);
/* Iterates through the tree level by level */
while (!queue.isEmpty()) {
int size = queue.size();
/* Tracks the size of the queue to process nodes level-wise. */
for (int i = 0; i < size; i++) {
Node curr = queue.peek();
queue.remove();
if (i == size - 1) {
System.out.print("[" + curr.data + "]");
}
/* Adds the left children of the current node to the queue. */
if (Objects.nonNull(curr.left)) {
queue.add(curr.left);
}
/* Adds the right children of the current node to the queue. */
if (Objects.nonNull(curr.right)) {
queue.add(curr.right);
}
}
}
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
if (data > root.data) {
root.right = insert(root.right, data);
} else {
root.left = insert(root.left, data);
}
return root;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
public class BinarySearchTreeTest {
@Test
void testNullRoot() {
// Test edge case: Null root (tree is empty)
Node root = null;
assertDoesNotThrow(() -> BinarySearchTree.rightView(root));
// Expect no output
}
@Test
void testSingleNodeTree() {
// Test edge case: Tree with a single node
Node root = new Node(1);
BinarySearchTree.rightView(root);
// Expect output: "1"
}
@Test
void testCompleteBinaryTree() {
// Test case: Complete binary tree
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
BinarySearchTree.rightView(root);
// Expect output: "1 3 7"
}
@Test
void testLeftSkewedTree() {
// Test edge case: Left-skewed tree
Node root = new Node(1);
root.left = new Node(2);
root.left.left = new Node(3);
BinarySearchTree.rightView(root);
// Expect output: "1 2 3"
}
@Test
void testRightSkewedTree() {
// Test edge case: Right-skewed tree
Node root = new Node(1);
root.right = new Node(2);
root.right.right = new Node(3);
BinarySearchTree.rightView(root);
// Expect output: "1 2 3"
}
@Test
void testUnevenTree() {
// Test case: Uneven tree structure
Node root = new Node(1);
root.left = new Node(2);
root.left.right = new Node(4);
root.right = new Node(3);
root.right.left = new Node(5);
BinarySearchTree.rightView(root);
// Expect output: "1 3 5"
}
@Test
void testRightViewComplexTree() {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(10);
binarySearchTree.insert(5);
binarySearchTree.insert(15);
binarySearchTree.insert(3);
binarySearchTree.insert(7);
binarySearchTree.insert(12);
binarySearchTree.insert(18);
binarySearchTree.insert(1);
BinarySearchTree.rightView(binarySearchTree.root);
// Expect output: "10 15 `8 1"
}
/* Binary Search Tree is every node's right subtree contains values greater than the parent node and left subtree contains values less than the parent node */
@Test
void rightViewTest() {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(4);
binarySearchTree.insert(2);
binarySearchTree.insert(1);
binarySearchTree.insert(3);
binarySearchTree.insert(6);
binarySearchTree.insert(5);
binarySearchTree.insert(7);
BinarySearchTree.rightView(binarySearchTree.root);
// Expect output: "4 6 7"
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
-
Time Complexity is O(N) because each node is visited once
-
Space Complexity is O(N) For storing nodes in the queue