The left view of Binary Tree
is the set of nodes that are visible when the tree is viewed from the left side
. This means that for each level of the tree, only the leftmost node
is included in the left view.
To print the left view of a Binary Tree
, we need to display the leftmost node
at each level of the tree. This can be done using a level-order traversal
also know as Breath First Search
with a queue
or using preorder traversal
also know as Depth First Search
with a recursive approach
.
The below code is using Level Order Traversal or Breath First Search
Code Flow for Print Left View of Binary Tree
-
Start: Call the leftView(root) method.
-
Check if the root is null:
-
Yes: Exit the method.
-
No: Continue to process.
-
-
Initialize an empty queue and add a root node to it.
-
Loop while the queue is not empty:
-
Get the number of nodes at the current level (size).
-
For each node in the level:
-
Check if it's the first node (i == 1):
-
Yes: Print the node’s data.
-
-
Add the left child (if it exists) to the queue.
-
Add the right child (if it exists) to the queue.
-
-
-
Repeat for all levels of the tree.
-
End.
Let's see the code now
package org.wesome.dsalgo;
import lombok.Data;
import java.util.LinkedList;
import java.util.Objects;
import java.util.Queue;
@Data
class Node {
int data;
Node left, right;
public Node(int data) {
this.data = data;
left = right = null;
}
}
public class BinarySearchTree {
Node root;
public static void leftView(Node root) {
if (Objects.isNull(root)) {
System.out.println("the root is null");
return;
}
/* Uses a level-order traversal approach with a queue. */
Queue<Node> queue = new LinkedList<>();
queue.add(root);
/* Checks if the root is null and exits if true. */
while (!queue.isEmpty()) {
/* Adds the root node to a queue. */
int size = queue.size();
for (int i = 1; i <= size; i++) {
Node node = queue.poll();
/* For every level, the first node (i == 1) is printed. */
if (i == 1) {
System.out.print("[" + node.data + "]");
}
if (Objects.nonNull(node.left)) {
queue.add(node.left);
}
if (Objects.nonNull(node.right)) {
queue.add(node.right);
}
}
}
}
void insert(int data) {
System.out.println("BinarySearchTree.insert data = " + data);
root = insert(root, data);
}
Node insert(Node root, int data) {
/* If the current root is null, a new node is created and returned. */
if (Objects.isNull(root)) {
Node tempNode = new Node(data);
return tempNode;
}
/* If the data is greater than the current node's value, the method recurses to the right subtree. */
if (data > root.data) {
root.right = insert(root.right, data);
}
/* it recurses to the left subtree. */
else {
root.left = insert(root.left, data);
}
return root;
}
}
package org.wesome.dsalgo;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
public class BinarySearchTreeTest {
@Test
void testNullRoot() {
// Test edge case: Null root (tree is empty)
Node root = null;
assertDoesNotThrow(() -> BinarySearchTree.leftView(root));
// Expect no output
}
@Test
void testSingleNodeTree() {
// Test edge case: Tree with a single node
Node root = new Node(1);
BinarySearchTree.leftView(root);
// Expect output: "1"
}
@Test
void testCompleteBinaryTree() {
// Test case: Complete binary tree
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
BinarySearchTree.leftView(root);
// Expect output: "1 2 4"
}
@Test
void testLeftSkewedTree() {
// Test edge case: Left-skewed tree
Node root = new Node(1);
root.left = new Node(2);
root.left.left = new Node(3);
BinarySearchTree.leftView(root);
// Expect output: "1 2 3"
}
@Test
void testRightSkewedTree() {
// Test edge case: Right-skewed tree
Node root = new Node(1);
root.right = new Node(2);
root.right.right = new Node(3);
BinarySearchTree.leftView(root);
// Expect output: "1 2 3"
}
@Test
void testUnevenTree() {
// Test case: Uneven tree structure
Node root = new Node(1);
root.left = new Node(2);
root.left.right = new Node(4);
root.right = new Node(3);
root.right.left = new Node(5);
BinarySearchTree.leftView(root);
// Expect output: "1 2 4"
}
/* Binary Search Tree is every node's right subtree contains values greater than the parent node and left subtree contains values less than the parent node */
@Test
void testBinarySearchTest() {
BinarySearchTree binarySearchTree = new BinarySearchTree();
binarySearchTree.insert(1);
binarySearchTree.insert(4);
binarySearchTree.insert(2);
binarySearchTree.insert(3);
binarySearchTree.insert(6);
binarySearchTree.insert(5);
binarySearchTree.insert(7);
binarySearchTree.insert(7);
BinarySearchTree.leftView(binarySearchTree.root);
// Expect output: "1 4 2 3 7"
}
}
plugins {
id("java")
id("io.freefair.lombok") version "8.13"
}
group = "org.wesome.dsalgo"
version = "1.0-SNAPSHOT"
repositories {
mavenCentral()
}
dependencies {
testImplementation(platform("org.junit:junit-bom:5.10.0"))
testImplementation("org.junit.jupiter:junit-jupiter")
}
tasks.test {
useJUnitPlatform()
}
Complexity Analysis
- The time complexity is O(N) time since every node is visited once.
- Space Complexity can be O(N) for queue in the worst case.